

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

15N NMR Spectroscopic of Pyrazolines-2 and Their Salts

J. Elguero^a; R. Faure^b; J. Llinares^b

^a InstitutO de Química Medica, CSIC, Madrid, Spain ^b Laboratoire de Chimie Organique Physique, Universite d'Aix-Marseille, Marseille Cédex, France

To cite this Article Elguero, J. , Faure, R. and Llinares, J.(1987) '15N NMR Spectroscopic of Pyrazolines-2 and Their Salts', Spectroscopy Letters, 20: 2, 149 — 157

To link to this Article: DOI: 10.1080/00387018708081535

URL: <http://dx.doi.org/10.1080/00387018708081535>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

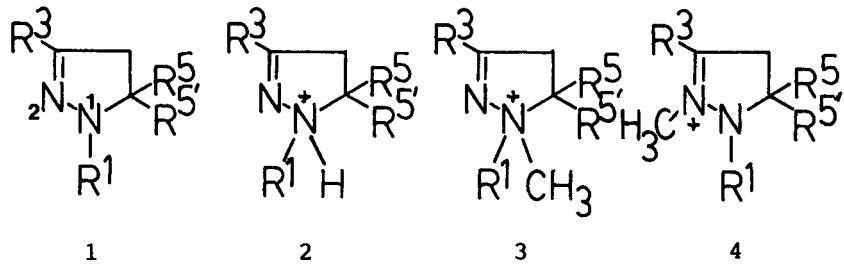
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

¹⁵N NMR SPECTROSCOPY OF PYRAZOLINES-2 AND THEIR SALTS

J. Elguero*

Instituto de Química Médica, CSIC, 28006 Madrid, Spain

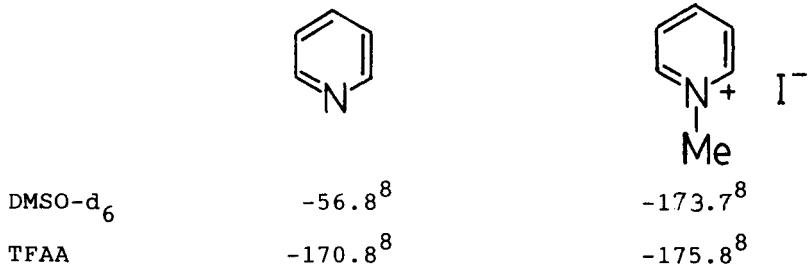
R. Faure and J. Llinares


Laboratoire de Chimie Organique Physique,

Université d'Aix-Marseille III,

13397 Marseille Cédex 13, France

KEY WORDS: Protonation, Quaternisation


¹⁵N NMR Spectroscopy is one of the most powerful tools to study the structure of organic molecules.¹⁻³ Δ^2 -pyrazolines 1 are heterocyclic hydrazones, which as a result of their cyclic structure, are stable in acidic media. Thus, their protonation has been studied by ¹H and ¹³C NMR spectroscopies.^{4,5} Pyrazolines are protonated and quaternarized at N₁, 2 and 3. It is possible to obtain the isomeric quaternary salts 4 by C-protonation of Δ^3 -pyrazolines.⁶

It is known⁷ that protonation of an sp^2 pyridine-type N-atom is accompanied by a relatively large upfield shift in the ^{15}N resonance of ca. 100 ppm, whereas protonation of an aliphatic amine N-atom gives a much smaller downfield shift of ca. 10 ppm. In order to compare the chemical shifts of pyrazolines 1 neat or in DMSO-d_6 with those in trifluoroacetic acid (salts 2), it is important to determine if a solvent effect modifies the protonation effect, as happens in ^{13}C NMR experiments.⁵

As a model of N_1 -atom behaviour we have selected N,N-dimethylaniline, to take into account the conjugation with the double bond, and as a model of N_2 -atom, pyridine. The observed chemical shifts with regard to nitromethane as an external reference are given below:

DMSO-d_6	-338.2	-328.9	-322.5
TFAA	-332.5	-331.2	-325.0

Trifluoroacetic acid produces slight upfield shifts in quaternary salts (averaged value, -2.3 ppm); thus it is possible to decompose the effects observed for N,N-dimethylaniline and pyridine into two terms:

$$-338.2 \Rightarrow -332.5 = + 5.7 = \Delta_{\text{prot}} + \Delta_{\text{solv}} = +8.0 - 2.3$$

$$-56.8 \Rightarrow -170.1 = -113.3 = \Delta_{\text{prot}} + \Delta_{\text{solv}} = -111.0 - 2.3$$

in quite good agreement with literature data.⁷

Results concerning the pyrazolines and their salts are gathered in Tables 1 to 4. The chemical shifts reported in Tables 1 and 2 are additive. The following contributions can be calculated by multiple regression (Table 5). All are as expected, except the fact that N-methylation in position 1 affects N₂ more than N₁. As these values are different for pyrazolines 1 and for pyrazolinium salts 2, the protonation effects depend on the substituents. Taking into account the aferementioned additivity they can be summarized as follows:

Scheme 1

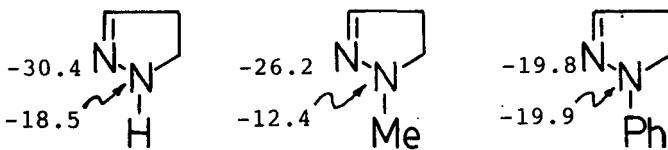


TABLE 1. ^{15}N chemical shifts of Δ^2 -pyrazolines

Comp.	R ¹	R ³	R ⁵	R ^{5'}	N ₁	N ₂
1a ^a	H	H	H	H	-251.5	-34.6
1b ^a	H	CH ₃	H	H	-255.0	-49.6
1c ^a	H	CH ₃	CH ₃	CH ₃	-228.2	-48.9
1d ^a	H	CH ₃	H	C ₆ H ₅	-242.2	-49.6
1e ^a	CH ₃	H	H	H	-250.9	-24.8
1f ^a	CH ₃	CH ₃	H	H	-254.8	-32.2
1g ^a	CH ₃	CH ₃	CH ₃	CH ₃	-228.5	-34.8
1h ^a	CH ₃	CH ₃	H	C ₆ H ₅	-244.3	-33.8
1i ^b	C ₆ H ₅	CH ₃	H	H	-231.6	-57.2

^aNeat; ^bDMSO-d₆

TABLE 2
 ^{15}N chemical shifts of Δ^2 -pyrazolines in TFAA

Comp.	R ¹	R ³	R ⁵	R ^{5'}	N ₁	N ₂
2a	H	H	H	H	-269.6	-67.8
2b	H	CH ₃	H	H	-270.6	-80.3
2c	H	CH ₃	CH ₃	CH ₃	-253.1	-80.7
2d	H	CH ₃	H	C ₆ H ₅	-257.8	-81.4
2e	CH ₃	H	H	H	-263.3	-48.2
2f	CH ₃	CH ₃	H	H	-264.1	-63.2
2g	CH ₃	CH ₃	CH ₃	CH ₃	-247.1	-62.2
2h	CH ₃	CH ₃	H	C ₆ H ₅	-254.2	-62.7
2i	C ₆ H ₅	CH ₃	H	H	-248.6	-79.6

TABLE 3
 ^{15}N chemical shifts of 1,1-disubstituted-
 Δ^2 -pyrazolinium salts

Comp.	R ¹	R ³	R ⁵	R ^{5'}	N ₁	N ₂
3f ^a	CH ₃	CH ₃	H	H	-252.1	-46.6
3f ^b	CH ₃	CH ₃	H	H	-254.3	-49.0
3i ^a	C ₆ H ₅	CH ₃	H	H	-239.0	-48.9

^aDMSO-d₆; ^bTFAA

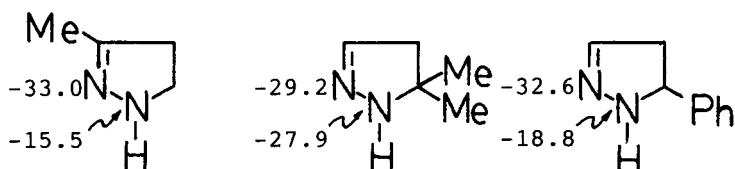


Table 3 values show that solvent effects in salt 3f, bearing the positive charge on N₁, is about -2.3 ppm. This value can be subtracted, if necessary, from the effects shown in Scheme 1 to calculate the protonation effects, Δ_{prot} . Comparison of salts 2 and 3, bearing the same substituents, are reported in Scheme 2.

Scheme 2

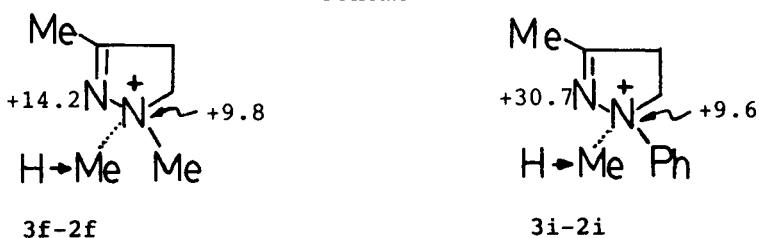


TABLE 4

¹⁵N chemical shifts of 1,2-disubstituted-

Comp.	Δ^2 -pyrazolinium salts					
	R ¹	R ³	R ⁵	R ^{5'}	N ₁	N ₂
4f ^a	CH ₃	CH ₃	H	H	-243.4	-151.5
4g ^a	CH ₃	CH ₃	CH ₃	CH ₃	-232.2	-153.2
4g ^b	CH ₃	CH ₃	CH ₃	CH ₃	-232.7	-153.6
4h ^a	CH ₃	CH ₃	H	C ₆ H ₅	-233.1	-153.7

^aDMSO-d₆; ^bTFAA

The fact that methylation effects on N₂ are so different (14.2 and 30.7 ppm) can be due to an interaction between the N₂ lone pair and the steric congestion in 3i.

There are no solvent effects in salts 4 (Table 4) and both chemical shifts are rather insensitive to substituent effects.

Although the result here reported clearly agree with the fact that protonation of Δ^2 -pyrazolines 1 takes place at N₁, with formation of salts 2, the situation is complex due to the following facts:

- i) owing to the conjugated aza-enamine structure, protonation on N₁ affects both nitrogen chemical shifts.
- ii) the effects of protonation and quaternisation

TABLE 5
Substituent contributions to the ^{15}N chemical shifts

	N_1 of 1	N_2 of 1	N_1 of 2	N_2 of 2
Constant ^a	-250.8	-36.8	-269.3	-67.2
1-Methyl	-0.5	14.3	5.6	18.5
1-Phenyl	23.0	-9.2	21.6	1.4
3-Methyl	-3.9	-11.2	-0.9	-13.8
5,5-Dimethyl	26.6	-0.9	17.2	0.3
5-Phenyl	11.6	-0.8	11.3	-3.0

at position 1 are rather complicated and depend on the substituents.

iii) the presence in trifluoroacetic solution of a small amount of diprotonated cation cannot be excluded, even though the second pK_a has never been attained.⁹

EXPERIMENTAL PART

Natural abundance ^{15}N NMR spectra were recorded at 20.28 MHz on a Bruker AM-200 spectrometer (Centre Interuniversitaire de RMN de Marseille). Nitromethane was used as external standard and no corrections for bulky differences were applied. The ^{15}N spectra were obtained using the INEPT pulse sequence.¹⁰ The width of a nitrogen 90° pulse was 26 μs and the width of a

proton 90° pulse was 28 μ s. The delay time τ between the pulses was set equal to 0.125 s which corresponds to $J_{\text{NH}}/4$ mean value for long range NH couplings.¹ The ¹⁵N spectra of 1b were obtained using the conventional acquisition mode. In this last case, traces of Cr(acac)₃ were added to shorten the T_1 relaxation times; the delay between pulses and the pulse angle were 5 s and 70°, ca. 20 μ s, respectively.

REFERENCES

- 1.- G.J. Martin, M.L. Martin, and J.P. Gouesnard, ¹⁵N-NMR Spectroscopy, in NMR Basic Principles and Progress, P. Diehl, E. Fluck, and R. Kosfeld, eds., Springer Verlag, N.Y. Vol. 18 (1981).
- 2.- G.A. Webb and M. Witanowski, Proc. Indian Acad. Sci. 94, 241 (1985).
- 3.- W. von Philipsborn and R. Müller, Angew. Chem. Int. Ed. Engl., 25, 383 (1986).
- 4.- J. Elguero and R. Jacquier, Tetrahedron Lett., 1175 (1965).
- 5.- R. Faure, J. Llinares, and J. Elguero, Magn. Reson. Chem., 24, 551 (1986) and references therein.
- 6.- J. Elguero, in Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees, eds., Pergamon Press, Oxford, Vol. 5 (1984).
- 7.- G. Anderegg, K. Popov, and P.S. Pregosin, Helv. Chim. Acta, 69, 329 (1986) and references therein.

- 8.- I. Yavari and J.D. Roberts, Org. Magn. Reson., 12, 87 (1979).
- 9.- J. Elguero, E. Gonzalez, and R. Jacquier, Bull. Soc. Chim. Fr., 2054 (1969).
- 10.- G.A. Morris and R.J. Freeman, J. Am. Chem. Soc., 101, 760 (1979).

Date Received: 10/28/86
Date Accepted: 12/03/86